The Coarse Baum – Connes Conjecture for Spaces Which Admit a Uniform Embedding into Hilbert Space

نویسنده

  • Guoliang Yu
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 8 Ju l 2 00 5 The coarse geometric Novikov conjecture and uniform convexity

The classic Atiyah-Singer index theory of elliptic operators on compact manifolds has been vastly generalized to higher index theories of elliptic operators on noncompact spaces in the framework of noncommutative geometry [5] by Connes-Moscovici for covering spaces [8], Baum-Connes for spaces with proper and cocompact discrete group actions [2], Connes-Skandalis for foliated manifolds [9], and ...

متن کامل

A Metric Space Not Quasi-isometrically Embeddable into Any Uniformly Convex Banach Space

We construct a locally finite graph and a bounded geometry metric space which do not admit a quasi-isometric embedding into any uniformly convex Banach space. Connections with the geometry of c0 and superreflexivity are discussed. The question of coarse embeddability into uniformly convex Banach spaces became interesting after the recent work of G. Kasparov and G. Yu, who showed the coarse Novi...

متن کامل

Random graphs, weak coarse embeddings, and higher index theory

This paper studies higher index theory for a random sequence of bounded degree, finite graphs with diameter tending to infinity. We show that in a natural model for such random sequences the following hold almost surely: the coarse Baum-Connes assembly map is injective; the coarse Baum-Connes assembly map is not surjective; the maximal coarse BaumConnes assembly map is an isomorphism. These res...

متن کامل

Some Notes on Property A

Introduction The coarse Baum-Connes conjecture states that a certain coarse assembly map µ : KX * (X) → K * (C * (X)) is an isomorphism (see for example [Roe96] or the piece by N. Higson and J. Roe in [FRR95]). It has many important consequences including one of the main motivations for this piece: a descent technique connects it to injectivity of the ('ordinary') Baum-Connes assembly map µ : K...

متن کامل

Remarks on Quasi-isometric Non-embeddability into Uniformly Convex Banach Spaces

We construct a locally finite graph and a bounded geometry metric space which do not admit a quasi-isometric embedding into any uniformly convex Banach space. Connections with the geometry of c0 and superreflexivity are discussed. The question of coarse embeddability into uniformly convex Banach spaces became interesting after the recent work of G. Kasparov and G. Yu, who showed the coarse Novi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998